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Standard NLO calculation

A current standard NLO n-jet calculation goes
as follows

1. Find a large farm of CPU's

2. Do a MC integration over n parton phase
space and calculate born+virtual

3. Do a MC integration over (n+1) parton phase
space using a variant of Catani-Seymour
subtraction.

4. Apply a jet algorithm and bin for the observable
under study.

You might be able to do PP-> 4 jets



How many jets do we need?
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jet multiplicity
» Events at LHC are jetty
W, Z, Higgs, SUSY,... events will come with lots of
bremsstrahlung jets.
» To go from a phenomenological description to a
prediction, NLO is needed for events with more than
a meager 4 jets




How to go beyond 4 jets

* The problem is the bremsstrahlung phase
space MC integration using a subtraction
method.
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What would be an alternative?

* This 8-jet event has
a LO weight.

e |t should also have
a NLO weight.

* How to calculate
this?
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The K-factor approach
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Now things are simple:
1. Generate the observable/distribution at LO
2. (Possibly) unweight the events

3. Calculate for each LO event the K-factor,

thereby correcting the observable/distribution to
NLO



Theoretical advantages

* The partons inside the fixed opaque jets are
integrated out.

* The cancellations between virtual and real
happen for each jet event.

 The LO phase space is factored out, this means
the integration over the bremsstrahlung phase
space in the K-factor is 3-dimensional.

However, to work we must have:
NLO jet phase space = LO jet phase space



NLO jets = LO jets

This is not true for any of the current jet algorithms
In use. To be true we must have:

« Jets remain massless during clustering.

e There can be no unclustered momenta.
This means

* We need a 3->2 clustering instead of a 2->1
clustering

e |f initial state partons are present: need a beam-
jet or beam-recoiller.



Phase space partitioning

* WWe decompose the bremsstrahlung phase
space into sectors.

* |n each sector a unique triplet of partons has
the smallest jet energy resolution and therefore
will be clustered to 2 jets.
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Forward Branching Phase Space

The bremsstrahlung contribution to the K-factor is
now given in the form of 2->3 branchers (which
are the exact inverse of the 3->2 jet clustering):
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with the final-final antenna phase space given by [46.52]
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Using FBPS with Kt-algorithm

* Given a jet event, the FBPS does not change
the jet observable for the 3-->2 jet algorithm
(e.g. Ht of the jet event)

* Applying a standard 2-->1 jet algorithm (e.qg.
anti-kt) produces something like this:

« If this distribution is added in a single bin (i.e.
integrated over) it is finite.

— « If partly in bin (LO at bin edge) gives fluctuations — a
? smearing function has to be included.
j * However, one can use the FBPS generator in this

N T mode. Still bremsstralung events and virtual are

- generated fully correlated.

» Sufficient “smearing” has to be added for finite results
(binning, resolution,...).

« Cannot be fixed by modifying the FBPS generator.




Validation of the FBPS (part 1)

To validate mainly the hard part of phase space
we make the following comparison:

* Generate the “"LO" n-jet phase space using
RAMBO and apply the FBPS to calculate the
weight to obtain the "NLO” n-jet phase space

* Generate the (n+1) phase space using RAMBO
and apply the jet algorithm to obtain again the
“NLO” n-jet phase space

These two results must agree
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Proof of Principle

* We use the FBPS to calculate the K-factors for
the gluonic contribution to n-jet production at LC

 For now we use a simple slicing method to
calculate the bremsstrahlung contributions

* This provides a good validation test on the
soft/collinear part of the FBPS

 Many virtual packages are available to calculate
the one-loop n-gluon contribution in generalized
unitarity
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Validation for 8 jets
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K-factors for n gluonic jets

—— 4+ ——— 4+ ++ —4+ -+ —+

jets || [-factor m\(0) ° K -factor m© ’ K -factor m9) ‘ I -factor
2 172+ 1 1.72216 | 1.15+0.05 || 1.6x10~>! — — — 0.00552438 1.09+ 0.05
3 243+ 2 120.638 | 1.13+ 0.08 0.043632 | 1.18= 0.08 5.98249 1.10= 0.08
4 302+ 3 125.234 | 1.30+ 0.13 0.282847 | 1.17+=0.13 0.0498892 1.18+=0.13
5 366+ 4 5941.55 | 0.944+ 0.17 849.054 0.87+0.17 31.5083 0.80=0.17
6 529+ 5 1202.54 | 1.15+£0.24 69.0066 1.06= 0.24 0.469815 0.82+0.24
8 650+ 7 26732.0 | 1.41+0.34 1364.49 1.32+0.34 1.41604 1.15+0.34
10 || 844+ 11 || 6575.23 | 1.49+0.49 579.066 1.26+ 0.49 || 6.09232x10=% | 0.97+ 0.49
15 || 126420 || 4690.02 | 1.39+ 0.95 671.554 1.284+ 095 || 437178 x10~7 | 1.24+ 0.95

* These are all for a single event at LC (ordered
amplitude) at 7 TeV using CTEQG6M

* The renormalization/factorization scale is half
the average di-jet mass. (The di-jet mass is the

starting scale for a dipole shower.)




Conclusions/Outlook

* \We constructed a new type of NLO phase
space generator

* |t integrates out all possible partonic
configurations in the jet cone, leaving the jet-
axis unaltered.

* The generator is constructed for easy future
GPU implementation

* We are now positioned to make NLO multi-jet
generators for single CPU+GPU systems (no
farms) which go up to order 10 jets! (and you
can run it again and again with different cuts).
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